1. Introduction

In many research studies, the response variable of interest is a continuous variable. Examples of continuous response variables are inpatient expenditure of medical interns, earnings of software engineers, insurance claim costs, failure times of machine parts, total cholesterol scores of heart patients, aggregate loss dollars for life insurance policies, etc. SurveyGLIM can also fit models with continuous response variables to complex survey or simple random sample data. This feature is illustrated in this section by fitting a Normal-identity, a Gamma-log and an Inverse Gaussian-log model to health data. A description of the specific data set follows.

2. The data

The data set forms part of the data library of the Medical Expenditure Panel Survey (MEPS). The MEPS is a longitudinal national survey that is used to yield national estimates of health care expenses. During 1999, background data and data on the health expenditures of a sample of 23,565 participants were obtained. The 1999 sample was stratified into 143 strata (VARSTR99) and into 460 PSUs (VARPSU99). The first portion of the data set to be used (meps.lsf, tutorial folder) is shown in the following LSF window.
The following variables are used in the subsequent analyses.

- **VARSTR99** is the variance estimation stratum of the respondent.
- **FACTYPE** is the variance estimation PSU of the respondent.
- **PERWT99F** is the final design weight of the respondent.
- **TOTEXP99** is the natural logarithm of the total health care expenditure of the respondent during 1999.
- **racex** is the value of a nominal variable for the race (1 for American Indian, 2 for Aleut or Eskimo, 3 for Asian or Pacific Islander, 4 for black and 5 for white) of the respondent.
- **inscov9** is the value of a nominal variable for the type of insurance coverage (1 for private, 2 for public and 3 for uninsured) of the respondent during 1999.

More information on the MEPS and the data are available at http://www.meps.ahrq.gov/Puf/PufDetail.asp?ID=93.

3. The models

The sampling distributions

The probability density function of the Normal sampling distribution is given by

\[
f(y_k, \mu_k, \psi) = \frac{1}{\sqrt{2\pi\psi}} \exp \left(-\frac{1}{2\psi} (y_k - \mu_k)^2 \right)
\]

where \(y_k\) denotes the response variable \(y\) for respondent \(k\), \(\mu_k\) denotes the mean of \(y_k\) and \(\psi\) denotes the dispersion parameter. The Normal distribution is symmetric about its mean. Two examples of non-symmetric distributions are the Gamma and the Inverse Gaussian distributions. These distributions are used as statistical models for continuous variables that only take positive values. In contrast to the normal distribution, which has the same basic shape irrespective of the mean and variance, the Gamma and Inverse Gaussian can take many different shapes depending on the mean and scale parameters. Both distributions are used in situations where the variable being studied is roughly continuous, but may be strongly skewed. The corresponding probability density functions are given by
\[
f(y_k, \mu_k, \psi) = \frac{1}{\Gamma\left(\frac{1}{\psi}\right)} \left(\frac{y_k}{\mu_k \psi}\right)^{\frac{1}{\psi}} \exp\left(-\frac{y_k}{\mu_k \psi}\right)
\]

and

\[
f(y_k, \mu_k, \psi) = \frac{1}{\sqrt{2\pi y_k \psi}} \exp\left(-\frac{1}{2y_k \psi} \left(\frac{y_k - \mu_k}{\mu_k}\right)^2\right)
\]

respectively.

The mean models

The mean model for the Normal-identity GLIM is given by

\[
\mu_k = \alpha + \beta_1 x_{1k} + \beta_2 x_{2k} + \cdots + \beta_r x_{rk}
\]

while the mean model for the Gamma-log and Inverse Gaussian-log GLIMs is given by

\[
\mu_k = \exp(\alpha + \beta_1 x_{1k} + \beta_2 x_{2k} + \cdots + \beta_r x_{rk})
\]

where \(\mu_k \) denotes the mean value of the response variable for respondent \(k \), \(x_{jk} \) denotes the value of the \(j \)-th predictor (\(j = 1, 2, \ldots, r \)) for respondent \(k \), and \(\alpha, \beta_1, \ldots, \beta_{r-1} \) and \(\beta_r \) denote unknown parameters. The two specific mean models are given by

\[
E[TOTEXP_k] = \alpha + \beta_1 x_{1k} + \beta_2 x_{2k} + \beta_3 x_{3k} + \beta_4 x_{4k} + \beta_5 x_{5k} + \beta_6 x_{6k}
\]

and

\[
E[TOTEXP_a] = \exp\left(\alpha + \beta_1 x_{1k} + \beta_2 x_{2k} + \beta_3 x_{3k} + \beta_4 x_{4k} + \beta_5 x_{5k} + \beta_6 x_{6k}\right)
\]

where \(E[TOTEXP_k] \) denotes the mean of the natural logarithm of the total medical expenditures during 1999 recorded for respondent \(k \) ; where \(x_{1k} \) (1 for Aleut or Eskimo and 0 otherwise), \(x_{2k} \) (1 for American Indian and 0 otherwise), \(x_{3k} \) (1 for Asian or Pacific Islander and 0 otherwise), \(x_{4k} \) (1 for Black and 0 otherwise) denote dummy variables for the race of respondent \(k \). Note that \(x_{1k} = x_{2k} = x_{3k} = x_{4k} = -1 \) for White respondents, who serve as the reference category. Also, \(x_{5k} \) (1 for any private insurance and 0 otherwise), and \(x_{6k} \) (1 for any public insurance only and 0 otherwise) denote dummy variables for the insurance coverage category of respondent \(k \). Here \(x_{5k} = x_{6k} = -1 \) represent respondents with no insurance coverage. Finally \(\alpha, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \text{ and } \beta_6 \) denote unknown parameters. In the case of the Gamma-log and Inverse Gaussian-log GLIMs, the ratio of means of the natural logarithm of the total medical expenditures of Aleut or Eskimos may be expressed as

\[
\frac{\exp(\alpha + \beta_1 x_3 + \beta_6 x_6)}{\exp(\alpha + \beta_5 x_3 + \beta_6 x_6)} = \exp(\beta_1).
\]
Similarly, \(\exp(\beta_2), \exp(\beta_3), \exp(\beta_4) \) and \(\exp(-\beta_1 - \beta_2 - \beta_3 - \beta_4) \) denote the ratios of the means natural logarithm of the total medical expenditures of American Indians, Asians or Pacific Islanders, Blacks and Whites and other races respectively. In addition, \(\exp(\beta_5), \exp(\beta_6) \) and \(\exp(-\beta_5 - \beta_6) \) are ratios of the means natural logarithm of the total medical expenditures of respondents with any private insurance, public insurance only and no insurance respectively.

The estimated mean logarithmic total medical expenditures for respondent \(k \) follows as

\[
\hat{E}[\text{TOTEXP}_k] = \hat{\alpha} + \hat{\beta}_1 x_{1k} + \hat{\beta}_2 x_{2k} + \hat{\beta}_3 x_{3k} + \hat{\beta}_4 x_{4k} + \hat{\beta}_5 x_{5k} + \hat{\beta}_6 x_{6k}
\]

for the Normal-identity GLIM and as

\[
\hat{E}[\text{TOTEXP}_k] = \exp\left(\hat{\alpha} + \hat{\beta}_1 x_{1k} + \hat{\beta}_2 x_{2k} + \hat{\beta}_3 x_{3k} + \hat{\beta}_4 x_{4k} + \hat{\beta}_5 x_{5k} + \hat{\beta}_6 x_{6k}\right)
\]

for the Gamma-log and Inverse Gaussian-log GLIMs respectively where \(\hat{\alpha}, \hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_6 \) denote the maximum likelihood estimates of \(\alpha, \beta_1, \beta_2, \ldots, \beta_6 \) respectively.

4. **Analyzing normally distributed outcomes from complex survey designs**

In this example, we are interested in exploring the linear relationship between a respondent's total health related expenditure and his/her ethnicity and gender. To make the assumption of normality more plausible, we use the natural logarithm of the total health care expenditure of the respondent during 1999 (\(\text{TOTEXP99} \)) as outcome. A normal distribution with identity link function defines the GLIM model used in this case.

Setting up the analysis

The first step is to open the file **meps.lsf** in a LSF window. This is done as follows.

- Use the **Open** option on the **File** menu of the root window of LISREL to load the **Open** dialog box.
- Select the **Lisrel Data (*.lsf)** option from the **Files of type** drop-down list box.
- Browse for the file **meps.lsf** in the **TUTORIAL** folder.
- Click on the **Open** button to open the file **meps.lsf** in a LSF window.
- Click on the **SurveyGLIM** menu to produce the following LSF window.
We are now ready to use the **SurveyGLIM** menu to fit the Normal-identity GLIM to the data in `meps.isf`. Select the **Title and Options** option on the **SurveyGLIM** menu. Enter the descriptive title **A Normal-Identity Model for MEPS Data** into the **Title** string field to produce the following **Title and Options** dialog box.

Since the default options will be used for this illustration, click on the **Next** button to go to the **Distributions and Links** dialog box.
The default values are correct, so click on the **Next** button to go to the **Dependent and Independent Variables** dialog box. Specify the response variable, TOTEXP99, by selecting it from the **Variables in data** list box and then by clicking on the **Add** button of the **Dependent variable** section. Specify the two categorical covariates, racex and inscov9, by selecting them from the **Variables in data** list box and then by clicking on the **Categorical** button of the **Independent variables** section to produce the following **Dependent and Independent Variables** dialog box.

![Dependent and Independent Variables dialog box](image)

Click on the **Next** button to load the **Survey Design** dialog box. Specify the stratum variable, VARSTR99, by selecting it from the **Variables in data** list box and then by clicking on the **Add** button of the **Stratification variable** section. Similarly, use the **Add** buttons of the **Cluster variable** and the **Weight variable** sections to specify the cluster variable, VARPSU99, and the weight variable, PERWT99F, respectively to produce the following **Survey Design** dialog box.
Since this completes the specification of our intended GLIM analysis, click on the Finish button to open the following text editor window for meps.prl.

![Survey Design Window]

Click on the Run Prelis toolbar icon to submit the syntax file above and to obtain the output file meps.out.

Discussion of results – Normal-identity model

A portion of the output file meps.out is shown in the following text editor window.
The results above indicate that both the race and the insurance coverage category of a respondent exert a statistically significant influence on the respondent’s total medical expenditures if a significance level of 5% is used. In particular, these results suggest that respondents with more comprehensive medical insurance coverage \((\text{inscov}_{91} = 1 \text{ or } \text{inscov}_{92} = 1)\) spend, on the average, more on medical expenses than those who have less comprehensive insurance coverage \((\text{inscov}_{91} = \text{inscov}_{92} = -1)\). In addition, there is sufficient evidence that Whites \((\text{racex}_{1 \text{ to } 4} = -1)\) spend, on the average, more on medical expenses than American Indians, Eskimos, Asians and Blacks.

Estimated outcomes for different groups

By using the results above, the estimated model may be expressed as

\[
\hat{E}[\text{TOTEXP}_k] = 4.59 + 0.02x_{1k} + 0.19x_{2k} - 0.27x_{3k} - 0.53x_{4k} + 0.73x_{5k} + 1.00x_{6k}
\]

The estimated model above implies that the estimated mean health care expenditure for an Asian respondent with no insurance \((x_{3k} = 1, \ x_{5k} = -1, \ x_{6k} = -1 \text{ and } x_{1k} = x_{2k} = x_{4k} = 0)\) is given by

\[
\exp(4.59 - 0.27 - 0.73 - 1.00) = \exp(2.59) = $13.33
\]

Similarly, the estimated mean health care expenditures for an Asian respondent with any private insurance and public insurance only follow as $156.39 and $204.69 respectively. For a White respondent with any private insurance coverage \((x_{1k} = x_{2k} = x_{3k} = x_{4k} = -1, \ x_{5k} = 1, \text{ and } x_{6k} = 0)\) the mean health care expenditures is estimated as

\[
\exp(4.59 - 0.02 - 0.19 + 0.27 + 0.53 + 0.73) = \exp(5.91) = $368.70.
\]
Likewise, for a White respondent with public insurance the corresponding estimate is $482.99. This estimate of
average health care expenditures will only be accurate if the outcome variable has a normal distribution. An
analysis that takes the strongly skewed distribution of health care expenditures into account may produce quite
different estimates, as will be seen in the next example.

5. Analyzing skewed outcome variables from complex survey designs
(method 1)

The Normal-Identity GLIM assumes that the distribution of the response variable is symmetric about its mean. In
the case of skewed response variables, which only assume values greater than zero, the Gamma and Inverse
Gaussian sampling distributions will be more appropriate than the Normal distribution.

Setting up the analysis

The Gamma-log model can be fitted interactively to the data in meps.lsf by replacing the Normal sampling
distribution with the Gamma sampling distribution. Before doing so, specify a different title by selecting the
Title and Options option on the SurveyGLIM menu to access the Title and Options dialog box and then entering
the title A Gamma-Log model for MEPS Data in the Title string field. Click on the Next button to go to the
Distributions and Links dialog box and select the Gamma option from the Distribution type drop-down list box
to produce the following Distributions and Links dialog box.

Since this is all we need to modify, click on the Next buttons of the Distributions and Links and the Dependent
and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the
following text editor window for meps.prl.
Submit the syntax file above by clicking on the **Run Prelis** toolbar icon to generate the corresponding output file *meps.out*.

Discussion of results – Gamma-log model

A portion of the resulting output file is shown in the text editor window below.

At first glance, comparing the parameter estimates produced by the Normal-identity model (which assumes a normal distribution) and the Gamma-log model (which takes skewness in the outcome variable into account), it seems as if the race-related effects are radically different between the two. If, however, we order the values of the racex coefficients according to size, it turns out that for both the Normal-identity model and Gamma-log models the ordering is the same. This result is not unexpected since there exists a monotone relationship between any set of real numbers so that

\[r_1 > r_2 \implies \exp(r_1) > \exp(r_2) \]

Recall that for the identity link function

\[
\hat{E}[\text{TOTEXP}_k] = \hat{\alpha} + \hat{\beta}_2 x_{1k} + \hat{\beta}_2 x_{2k} + \hat{\beta}_3 x_{3k} + \hat{\beta}_4 x_{4k} + \hat{\beta}_5 x_{5k} + \hat{\beta}_6 x_{6k}
\]
whereas for the log-link function

\[\hat{E}[\text{TOTEXP}_k] = \exp\left(\hat{\alpha} + \hat{\beta}_1 x_{1k} + \hat{\beta}_2 x_{2k} + \hat{\beta}_3 x_{3k} + \hat{\beta}_4 x_{4k} + \hat{\beta}_5 x_{5k} + \hat{\beta}_6 x_{6k} \right) \]

Substitution of the predictor values, using the appropriate parameter estimates, in any of the equations above, shows that the expected total expenditure values do not differ substantially.

Estimated outcomes for different groups

The fitted model is given by

\[\hat{E}[\text{TOTEXP}_k] = \exp\left(1.49 + 0.01 x_{1k} + 0.05 x_{2k} - 0.06 x_{3k} - 0.12 x_{4k} + 0.17 x_{5k} + 0.22 x_{6k}\right). \]

The estimated model above implies that the estimated mean health care expenditure for a White respondent with no insurance \((x_{1k} = x_{2k} = x_{3k} = x_{4k} = x_{5k} = x_{6k} = -1)\) is given by

\[\exp\left(\exp(1.49 - 0.01 - 0.05 + 0.06 - 0.12 - 0.17 - 0.22)\right) = \exp(1.22) = \$29.58. \]

Similarly, the estimated mean health care expenditures for a White respondent with any private insurance and public insurance only follow as \$376.10 and \$509.73 respectively. The results above also indicate that \(\exp(\hat{\beta}_5) = \exp(-0.12) = 0.88\) which implies that, on the average, Black respondents spent 12% less on health care in 1999 than other respondents. Similarly, it follows that \(\exp(-\hat{\beta}_5 - \hat{\beta}_6) = \exp(-0.39) = 0.68\) which implies that, on the average, respondents with no insurance spent 32% less than other respondents on health care in 1999.

6. Analyzing skewed outcome variables from complex survey designs (method 2)

To explore the relationship between a respondent's total health related expenditure and his/her ethnicity and level of insurance coverage, we fit a GLIM model with inverse Gaussian distribution and log link function. Note that the mean model of the Inverse Gaussian-log GLIM is identical to that of the Gamma-log GLIM.

Setting up the analysis

Again, first modify the title by selecting the **Title and Options** option on the **SurveyGLIM** menu and entering the title **An Inverse Gaussian-Log Model for MEPS Data** in the **Title** string field. Go to the **Distributions and Links** dialog box by clicking on the **Next** button and select the **Inverse Gaussian** option from the **Distribution type** list box to produce the following **Distributions and Links** dialog box.
This completes our modifications. Click on the Next buttons of the Distributions and Links and the Dependent and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the following text editor window for meps.prl.

The corresponding output file meps.out is obtained by clicking on the Run Prelis toolbar icon.

Discussion of results – Inverse Gamma-log model

Some selected results of the output file meps.out are shown in the following text editor window.
Like the Gamma-log model, the Inverse Gaussian-log model produced results that were very different from the Normal-identity model. Since the Gamma-log model and Inverse Gaussian-log model both take the skewed distribution of the outcome variable into account, it is not surprising that they produced similar parameter estimates, standard error estimates, and estimates of statistical significance in this example.

Estimated outcomes for different groups

The estimated model follows from the results above as

\[
\hat{E}[\text{TOTEXP}_k] = \exp(1.50 + 0.01x_{1k} + 0.06x_{2k} - 0.06x_{3k} - 0.13x_{4k} + 0.17x_{5k} + 0.22x_{6k})
\]

The fitted model above implies that the estimated mean health care expenditure for a Black respondent with no insurance \((x_{4k} = 1, \ x_{5k} = x_{6k} = -1, \ \text{and} \ x_{3k} = x_{2k} = x_{3k} = 0)\) is given by

\[
\exp(\exp(1.50 - 0.13 - 0.17 - 0.22)) = \exp(2.69) = \$14.74
\]

Similarly, the estimated mean health care expenditures for a Black respondent with any private insurance and public insurance only follow as \$106.12 and \$134.79 respectively. The results above also indicate that \(\exp(\hat{\beta}_2) = \exp(0.06) = 1.06\) which implies that, on the average, American Indian respondents spent 6% more on health care in 1999 than other respondents. Similarly, it follows that \(\exp(\hat{\beta}_4) = \exp(0.17) = 1.19\) which implies that, on the average, respondents with any private insurance spent 19% more than other respondents on health care in 1999.